
1

Ranking DBA Programs on a Rugged Landscape
T. Grandon Gill, University of South Florida

Abstract
The paper describes the use of the elaborated action design research (eADR) method to develop a
prototype of a tool that generates user-customized rankings of U.S. DBA programs. It begins by
reviewing literature highlighting the weaknesses of institutional and program rankings, the source of
many being the underlying rugged landscape that characterizes the program selection problem. It then
references two key design science research frameworks:

I. eADR (Mullarkey & Hevner, 2019), which views design as a set of cycles (diagnosis, design,
implementation, and evolution), each of which involves planning, action, evaluation,
reflection and learning activities.

II. Design fitness (Gill & Hevner, 2013), which draws upon evolutionary principles to assess an
artifact's decomposability, malleability, openness, embeddedness in a design system, novelty,
interestingness, elegance, and usefulness.

Using the design fitness framework, it identifies appropriate criteria for evaluating the three artifacts
under development: i) the list of program criteria, ii) the analytical framework used to create the ranking,
and iii) the prototype itself. These criteria are based upon the proposed design objective of building a tool
that can be used to test an approach to ranking DBA programs.

The paper then steps through the design process that was used to construct the three artifacts. Key design
cycles are enumerated and the rationale used to evaluate each cycle is described. The final version of each
artifact is presented, with an evaluation of strengths and weaknesses from a design fitness perspective. It
is argued that design objectives for decomposability, malleability and openness were well supported by
the prototype. The objectives of novelty and usefulness had, at best, limited support in the prototype,
while elegance and embeddedness in a design system were almost entirely lacking.

In identifying the weaknesses of the prototype artifact, the lack of embeddedness and its failure to
incorporate programs outside the U.S. are judged to be the most serious. It proposes that institutional
support might follow two possible paths: 1) support from an individual institution, likely to be motivated
by the potential to increase the program's visibility and the ability to control the data used to develop
rankings, and 2) support from an industry-wide institute or consortium of programs that would likely be
motivated by the desire to keep less rigorous published rankings from getting traction.

The final topic discussed is the lessons learned from framing the artifact design process as an eADR
project. It concluded that the eADR framework was readily adaptable to the actual process undertaken. It
also notes that the characteristics of the project--with a single developer and three interacting artifacts--
made it difficult to distinguish the diagnosis, design and implementation stages of the eADR. It proposes
that an alternative way of framing the design process would be to characterize the actual process as design
stage cycles involving interacting artifacts. More research on this alternative characterization would be
needed to justify it.

The paper concludes by asserting that the growth of DBA programs will almost certainly lead to the
publication of program rankings by sources widely viewed as legitimate. It repeats its earlier argument
that widespread adoption of a tool such as that described in the paper could significantly reduce the
impact of such published rankings.

2

Introduction
In December 2015, just a couple of days before the Muma College of Business was set to welcome its
second cohort to the program, the following headline appeared in the Tampa Bay business press (Brown,
2015):

“Ranking puts USF Muma doctorate program above Harvard, UF”

That we had come in first place in the 2016 national ranking by Top Management Degrees came as quite a
surprise to us. Being just one year old, we had yet to graduate a single participant. Moreover, in
attempting to identify attributes though which the Muma DBA program could have achieved such exalted
status, the best we could come up with were: 1) the waistline of its academic director, or 2) the number of
low production quality videos we had placed on YouTube…possibly, the sum of the two. On that basis,
we decided not to draw attention to that ranking—lest our rigor (and integrity) be called into question.

As the popularity of U.S. and global DBA programs continues to grow, program rankings are likely to
proliferate. Already, CEO Magazine publishes a listing of “the market’s premier providers” (https://ceo-
mag.com/wp-content/uploads/2024/04/2024-DBA-Listing-.pdf). The Dubai RankingTM
(https://dubairanking.net/#toprankings) similarly ranks international programs. Eventually, it seems
inevitable that widely cited business ranking outlets, such as the Financial Times or USNWR, will begin
publishing their own lists.

The present paper has three goals. The first is to summarize weaknesses intrinsic to standard ranking
approaches. The second is to lay out, in design terms, the characteristics of a ranking system that might
address some of these flaws. The third is to describe the development of a prototype—part of an ongoing
design science research (DSR) effort—that incorporates a number of these design concepts. The paper
concludes by considering possible paths for further developing and disseminating the prototype.

The Paradox of Rankings
Published rankings of institutions and programs present an intriguing paradox, with their impact being
inconsistent with their limited rigor. A typical ranking system is constructed by collecting a wide range of
institutional or program data attributes which are then assigned positive or negative weights. These
weights are summed to create a composite score, can then be used to establish a rank order. On the impact
side, the resulting listing provides one of the easiest shortcuts for guiding choices between institutions
and/or programs. Their impact is indisputable. A widely cited study by the National Bureau of Economic
Research (NBER) found that higher USNWR university rankings led to statistically significant reductions
in admissions rate (selectivity), with accompanying increases in yield (percent of accepted students who
attend) and SAT scores (Monks & Ehrenberg, 1999, p. 12), confirmed in a subsequent study (Meredith,
2004).

Regarding rigor, ranking systems suffer from three serious defects. The first is methodological. Leaving
aside the valid concern that an institution or program might misreport their own date to achieve a higher
ranking (the second defect), numerous concerns have been raised regarding the collection, transformation
and analysis of ranking data. Bachrach et al. (2017) list the following general categories of
methodological shortcomings: i) asking the wrong questions or not enough of the right ones, ii) question
mis-/reclassification and the interconnections among factors, iii) fundamental problems with ordinal
transformations, iv) fundamental problems with attempts at unidimensionality, and vi) overaggregation,
de facto heuristics, and traps. Beyond these, there is the intrinsically subjective nature through which
weights are established for different institutional or program characteristics.

https://ceo-mag.com/wp-content/uploads/2024/04/2024-DBA-Listing-.pdf
https://ceo-mag.com/wp-content/uploads/2024/04/2024-DBA-Listing-.pdf
https://dubairanking.net/#toprankings

3

The second defect is that prominent rankings invite manipulation. As an example (Gill, 2010, p. 64):

it was recently suggested that Clemson University had made a significant number of decisions—
impacting tuition, class size, and faculty salaries—with the specific goal of improving its national
ranking (Van Der Werf, 2009), as opposed to basing the decisions strictly on educational merit.
There were also accusations that its administrators gave very low peer assessments to other
schools…while rating itself very highly so as to increase its relative position (McGurn, 2009).

The final category of defect is that rankings—when used to choose between institutions or programs—
make little sense. For example, consider a hypothetical ranking of colleges. For that ranking to be a useful
guide for a particular individual, that individual would need to have preferences consistent with the
ranking weights. Somewhat tongue-in-cheek, these would imply an individual having the following
characteristics (adapted from Gill, 2010, p. 66):

• SAT scores in the top range of the 99th percentile
• Straight A grades in both humanities and sciences
• At least one outstanding extracurricular activity
• No location preference
• No religious preference and no objections to any particular religion
• Indifference to public or private education
• Indifference to post graduate requirements for military service
• No financial constraints, but nevertheless desirous of a school with excellent financial aid
• Of indeterminant gender
• Very competitive in sports, but not in any particular sport
• Very interested in academics, but indifferent to field of study
• Engaged in all social and extracurricular activities

The first three address the question of the individual’s likelihood of acceptance. The remainder include
the types of criteria that typically lead to higher institutional rankings. Absent such characteristics, the
weights used to create a composite score are unlikely to be tuned to the applicant’s needs or desires.

The rankings paradox derives from the fact that the elements that contribute to a ranking score are not
decomposable. Instead, they interact both with each other and with a user’s preferences. For example, the
combination of attributes that make for a good party school (e.g., strong Greek community, excellent
sports teams, modest workload, lax enforcement of drinking laws) might be quite different from those that
make for an outstanding undergraduate seminary. It is also quite possible for the same decision maker to
be attracted to very different alternative possible combination of attributes.

In situations where desirability is heavily influenced by interactions, combinations of attributes dominate
main effects. In consequence, local peaks (i.e., combinations where any incremental attribute change
lowers the ranking value) abound. Evolutionary biologists refer to this as a rugged fitness landscape
(Kauffman, 1993). On such landscapes, the ranking effect of an attribute change in one region of the
landscape can be very different from the same attribute change in a different region. For example, an
applicant planning to go away to school may be very sensitive to the characteristics of a school’s size and
location. An applicant seeking an online program, in contrast, may be totally indifferent to size and
location attributes.

College rankings attempt to deal with the existence of local peaks by creating separate rankings for broad
categories of institutions. That way, small liberal arts institutions are not ranked alongside large state
research universities. At the graduate level, they rank programs separately for the same reason. While

4

such separation reduces the problem somewhat, interactions between attributes still exist within
categories. Thus, individuals using rankings as the primary criteria for deciding upon an institution or
program will likely rely on attribute weightings inconsistent with their preferences.

Nevertheless, as stated at the outset, rankings—even imperfect ones—are too impactful to ignore. The
research described in this paper is a design science research (DSR) project that constructed a prototype of
a ranking tool that addresses at least some of the weaknesses inherent to published program rankings.

Design Objectives
The objectives of DSR differ from those of positivist and interpretive research in very fundamental ways.
The latter forms of research generally involve one or more research questions. Answering these questions
can be done using different approaches, e.g., proposing or modifying frameworks/theory, analyzing
observations, and testing hypotheses. In contrast, the DSR process is generally better served by stating
one or more broad research objectives that are, in turn, achieved through the design of one or more
artifacts.

Objectives and Artifacts
In the current research, the key objective was as follows:

To develop a tool that could be employed to rank DBA programs.

The artifacts developed through the process consisted of the following:

1. A list of attribute variables that could be employed to rank DBA programs according to their
suitability, along with a series of DBA program test cases.

2. An analytical framework for creating a composite ranking index based on these variables.
3. A prototype that could be used to test the efficacy of the ranking process.

The Design Process
The elaborated action design research (eADR) framework, proposed by Mullarkey and Hevner (2019),
was employed to guide the research process. As illustrated in Figure 1, this process consists of a series of
four stages, each of which involves five activities: planning, artifact creation, evaluation, reflection and
learning. The product of each stage is one or more artifacts.

Figure 1: eADR process (Mullarkey & Hevner, 2019, p.9)

The three artifacts that were targets of the current research could be mapped to stages approximately as
follows:

5

• Diagnosis: Establishing the list of variables and program test cases.
• Design: Developing an analytical framework suitable for performing the DBA program

ranking task.
• Implementation: Constructing a prototype with an interface suitable for testing efficacy.

Entry to the eADR model can occur at any stage. As suggested by the outer arrows in Figure 1, it is also
possible to move both forward and backward between stages, depending upon the evaluation of the
artifact being considered. The potential for backward transitions proved to be particularly important
during the project, since the identification of weaknesses in the implementation stage (i.e., the prototype)
often necessitated changes to the algorithm and, in many cases, to the included variables and test cases.

Design Criteria for Artifacts
Guiding the evaluation process were a series of criteria used to assess the fitness of an artifact (Gill &
Hevner, 2013). The criteria, derived from translating the concept of biological fitness to a design setting,
are illustrated in Figure 2.

Figure 2: Criteria for assessing artifact fitness (Gill & Hevner, 2013, p. 5.15)

In the Figure 2 model, an artifact’s fitness describes its ability to survive and reproduce (i.e., proliferate).
A key aspect of this is the artifact’s perceived usefulness (leaving open the possibility that an artifact
could be too useful and consequently fail to evolve sufficiently to survive in the long run. Beyond direct
usefulness, however, there are other characteristics that may contribute to fitness. These characteristics,
shown in Figure 2, are as follows: decomposable is driven by the degree to which individual aspects of
the artifact can be separated, malleable refers to the user’s ability to adapt the artifact, open characterizes
the transparency of the artifact’s construction, embedded in a design system can be framed in terms of
institutional support for the artifact, novel depends upon the lack of existing similar artifacts, interesting
and elegant both address the artifact’s ability to engage the user independent of the artifact’s utility.

In assessing relative importance of these design characteristics, the research objectives were important.
Because the third artifact—a prototype suitable for testing efficacy—would satisfy the principal goal of
the research, the two attributes most associated with deploying a finished product (elegant, embedded in a
design system) were deemed to be of lowest priority. Novel and interesting both seemed desirable but not

6

necessarily critical given the early stages of research. Anticipating the likelihood that DBA programs
would be resistant to rankings, as well as the need to engage users in the further development of the
artifact, the characteristics of decomposability, openness and malleability were judged to be the most
critical initially.

Method: The Design Process
Having established the design criteria in the diagnosis phase, the next step was to design the various
artifacts. The approach chosen was iterative prototyping. This section describes the process through which
the three main artifacts were created.

Initial Design Decisions
The fitness criteria identified in Figure 2 played a critical role in determining the system architecture.
Specifically:

• Decomposable: The user should be able to identify all the program inputs and outputs and how
they contribute to a ranking. Data should be separate from application logic.

• Malleable: Users should be able to modify and customize the application to their desired
purposes.

• Open: Users should be able to fully inspect the underlying data and logic used to create rankings.
In addition, the sources of data should be transparent.

As suggested by the figure, the design objective of being useful would also play a substantial role in
determining the application’s fitness.

Based on these priorities, a spreadsheet-based solution for the prototype implementation seemed the most
logical choice:

• Data used in developing a ranking could be embedded in the application yet be displayed
separately (supporting decomposability).

• Users were generally expected to be familiar with spreadsheets and likely had access to Excel
(supporting malleability and usefulness). To avoid creating obstacles to non-technical users,
macros and VBA code were not employed.

• Although worksheets and cells could be hidden and/or protected to prevent the user from making
entry errors, experienced users could unhide/remove protections to inspect or modify functions
(again supporting malleability and openness).

Simply stated, a spreadsheet deployment seemed to offer the greatest transparency—albeit at a
considerable cost in terms of elegance. To ensure transparency, program test cases were assembled from
data on the public websites of DBA programs. The source for each value was recorded in a separate
workbook, consisting of an individual worksheet for each program.

Artifact 1: Variables and Program Test Cases
The first artifact developed for the project was a table of attributes to be used in establishing a customized
ranking. Before beginning any data gathering, a list was developed. That list is presented in Appendix
Table A1. Each attribute was assigned to a general category (i.e., location, meetings, institution, program,
cost, feature). Such categories could be used to adjust the impact of groups of related attributes. This
feature proved useful in both ranking and testing.

7

During the project’s design cycles (Appendix Table A2), significant changes were implemented to the
attribute variables and weights over time. These included:

• Adding new variables as more DBA programs were added to the prototype
• Normalizing variables across their range to make their effect more transparent to the user.
• Assigning default values to missing variables.
• Setting optional target values for variables whose optimal values were likely to be somewhere

between their minimum or maximum values.

Using the initial list (Table A1) of program characteristics as a guide, the program data used to test the
model evolved as follows:

• 2 (then 3) program test cases were constructed for the purpose of testing the interface and
formulas.

• Data was later acquired for 30 programs by visiting each program’s website. The choice of
programs was driven by EDBAC membership and was limited to U.S. programs. The limitation
to U.S. programs was driven by the researcher’s unfamiliarity with the design of non-U.S.
programs, discussed later under research limitations.

• Through exploring program websites, new program attributes were identified and added to the
attribute list. Eventually, the list expanded from its original 24 attributes to 60.

• The list of programs was further expanded to 32 and a second pass of data gathering was initiated
to acquire missing data and confirm existing data.

Artifact 2: Analytical Framework
The initial analytical framework employed was based on a commercial expert system developed by the
researcher in the late 1980s. That system provided users (typically, high school students) with a ranked
list of college choices filtered by their likelihood of admission. The source data used by the system was
provided by a company that also supplied the data used by the Arco College Guide. Within that earlier
application, nearly all college attributes were coded as binary or ordinal variables on a 1 to 5 scale. Each
was assigned to a broader category (e.g., academics, extracurriculars, social, sports, location, etc.) A
college’s score was the sum of the weighted values of the attributes for each college:

 Score(i) = ∑j Ck(j) * Wj * Vij

where Ck was the category weight associated with attribute j, Wj was the weight for the particular attribute
(j) and Vij was the actual value of the attribute j for college i.

Initially, the DBA prototype employed the same approach. Later, it became apparent that the approach
was very cumbersome when dealing with real values, such as tuition and hours of meetings per semester.
For this reason, a new analytical approach was selected. The user would enter values in their raw form,
with each variable having a specified minimum and maximum value. Using this information, each
variable could be normalized to a value between 0 and 1 across its range, with values falling outside the
range being treated as equivalent to their minimum or maximum value, as appropriate.

The resulting formula for the program’s score was as follows:

Score(i) = ∑j Ck(j) * Wj * N(Vij , Minj, Maxj, Targetj)

where Minj, Maxj, Targetj (if provided) were the minimum, maximum, and target values for attribute j and
N() was the norming function that took the raw value (Vij) for attribute j, program i, and transformed it to

8

a value between 0 and 1 . The three norming behaviors, based on the sign of the criteria (Wj) and whether
a target value was provided, are illustrated in Figure 3.

Figure 3: Impact of norming program attributes depending on positive, negative and target values for criteria

The need for different contribution behaviors was a consequence of the ruggedness of the fitness
landscape for different users. For example:

• Some users might view a program’s lack of a conference requirement positively, whereas others
could view it negatively. This type of reversal is common in rugged landscapes. For example, if
we mapped ingredients to the fitness of different recipes, adding garlic might benefit the fitness of
some recipes and detract from the fitness of others.

• Certain attributes, such as the expected hours of work per week specified by the program, could
be viewed as both too high (i.e., too much work) or too low (i.e., evidence of lack of rigor). For
these attributes, it would be better to have the user specify a target value, with the contribution to
a program’s score falling off as the program’s variable value differed from the user’s target.

As suggested by Figure 3, regardless of an element’s weight (positive, negative, targeted), in computing a
program’s score the variable’s contribution to a program’s overall score always ranged from 0 to some
positive value (the absolute value of the element’s weight). By avoiding subtractive criteria, it became
easy to calculate each element’s incremental contribution to the program’s overall score.

While gathering data from actual program websites, it became clear that missing values abounded. For
this reason, a default value was introduced for each variable. Use of a default was signaled by a -1 value
in the program’s data. To assess data integrity, the percentage impact of default values was then computed
for each program.

9

Artifact 3: The Prototype
Figure 4 (which is likely to be readable only by zooming in) contains the final list of criteria for the
version of the prototype at the time of writing. The weights and targets are those of a test case for ranking
online programs and do not represent values in a likely scenario.

Figure 4: Final list of criteria for the Alpha version of the prototype

Some features shown in Figure 4 were incorporated specifically to support the design objective of
malleability:

1. Two criteria were designed to be driven by user experience: i) location assessment, and ii)
program impression. These were set to the default flag (-1) for all programs. Users could replace
the default values in the program table with their own assessments of perceived desirability (for
location) and a rating of their experiences interacting with the program (program impression).
Weighted heavily enough, these values could become the main driver of the rankings. Placing the
user’s thumb in the scale in this manner would not necessarily be a bad thing. For example, a
case can be made that it makes sense to prefer a local program; similarly, a positive experience
interacting with a program in the initial stages might auger well for the future.

2. The final five criteria are left open for users to establish their own ranking criteria. The process
of adding attributes is relatively straightforward since a variable’s impact was fully determined
by settings for the columns in Figure 4. Unfortunately, the benefits of this customizability were,
perhaps, less than they might have appeared. Their drawback was that, to be meaningful, users

10

would need to research the actual values for each program (currently 32) included in the
application.

Key changes made during the design process are now described.

Incremental Changes
The target interface for the prototype evolved over many design cycles, as summarized in Table A2. The
main motivator of these changes was the growing complexity of the application as more criteria and
programs were added. Among these changes:

• Program data was gathered in a separate spreadsheet so that the source of each value could be
logged. In some cases—such as establishing the number of hours of synchronous class time per
semester—significant calculations needed to be performed to achieve relative consistency across
programs. Documenting data sourcing supported the design objective of openness.

• To reduce user errors and misinterpretation of results, conditional formatting was added to
highlight cells outside of established ranges (red, bold) and scores driven by default program
values (blue, bold). This highlighting supported the design objective of malleability.

• To further support the design objective of openness, when presenting rankings the application
displayed:

o Program scores on the sorted list of ranked programs
o The contribution of each category to the program’s score. These scores could be

compared to those of other programs.
o The percentage of each program’s score that could be attributed to default values, an

indicator of trustworthiness. As default percentages grew higher, the fidelity of a
program’s ranking score became increasingly questionable. Indeed, on some runs a
hypothetical “program” consisting entirely of default values could end up somewhere in
the middle of the ranking.

Transformational Change: Implementing Scenarios
The biggest challenge presented by the interface involved the substantial number of criteria that a user
needed to enter to get a suitable ranking. This was identified as a problem by program personnel and
college administrators midway through the design process (see Table A2, cycle 5). To address this
concern, a major departure from the original design was undertaken, the introduction of scenarios.

In the original design, users entered their own weights, targets and filtering conditions directly into the
criteria page (shown earlier, in Figure 4). That approach had significant implications:

• If users wanted to test out different rankings (e.g., a ranking for online programs and one for
regular programs), they had to save separate copies of the entire spreadsheet workbook.

• To get a quick ranking, they had to understand how most, or all, of the criteria impacted
rankings—a significant investment in learning.

• The application could only be distributed with a single “base case”.

The introduction of scenarios addressed many of these problems. Scenario worksheets (ultimately 10 in
total) were added, each of which contained its own set of criteria weights. Two types of scenarios were
provided:

1. Pre-configured scenarios, with criteria weights and filters adjusted towards a particular ranking
objective (e.g., ranking online programs, ranking programs according to their similarity to PhD
programs, etc.)

11

2. Unspecified scenarios, available for users to modify, as desired, to achieve their personalized
ranking objectives.

When the user selected a scenario (by number, 1 through 10), the values from that scenario populated the
Criteria worksheet (Figure 4), which automatically led to a recalculation of the ranking. In the final
version of the prototype, the scenario number was entered in a worksheet labeled “Main”, consisting of:

• A list of available Scenario worksheets
• A cell to for the user to enter a scenario number
• The resulting ranked list of programs with a breakdown by category and the default percentage

contribution for each program’s score.

A description of the scenarios is provided in Appendix A, Table A3.

Results: The Implementation Cycles
A particular challenge of trying to fit DSR into a traditional paper format is the iterative nature of the
process. Specifically, “results” are continuously being acquired as the method (i.e., the design process)
proceeds. In the current paper, the results section consists of:

• A brief look at the initial Alpha prototype, and
• A self-assessment of the fitness of the initial Alpha prototype.

Artifact 3: The Alpha Prototype
After the completion of the 10th major cycle (Table A2), the initial test version of the prototype was
complete. A screen capture of the Main worksheet for the Alpha prototype is shown in Figure 5.

Figure 5: Main worksheet of the Alpha Prototype showing a scenario placing the heaviest emphasis on program costs

The artifact in its final version—albeit still an alpha prototype—proved to be considerably more
ambitious than the researcher anticipated. With respect to the original design criteria, considerable
progress was made. Specifically:

• Decomposable: The prototype had various components that could each potentially be used
independently. For example, the Criteria worksheet could be used as a guide to the information an
“ideal” program website might contain. The program data spreadsheet could be loaded into a database

12

to facilitate considerably more sophisticated searches than provided by the application’s rudimentary
filtering capability.

• Malleable: Users with a very limited knowledge of spreadsheets could, nevertheless, build relatively
sophisticated rankings using the existing scenario architecture. More sophisticated spreadsheet users
could adapt the artifact to special needs in a variety of ways, adding and removing criteria, creating
new scenarios, etc.

• Open: Everything in the spreadsheet and all DBA program data could be inspected. The only
protections were those implemented to reduce the risk of accidental overwrites. These were easily
disabled. Additionally, the researcher’s plan is to release the application under a Creative Commons
license that would allow for unlimited copying and modification (with attribution).

The usefulness of the application has yet to be fully established. The researcher sees four potential ways
that the application might prove useful:

1. To individuals interested in a doctorate seeking to identify DBA programs that are a good fit.
2. To program directors seeking a better understanding of the design of other programs.
3. To program web managers deciding what criteria might be incorporated in program websites.
4. As a means of forestalling or reducing the influence of general published program rankings by

providing a customizable alternative.

Self-Assessment of Prototype Fitness
In assessing the completed Alpha Prototype, the researcher mapped the characteristics of the artifact to the
design characteristics earlier presented in Figure 2. A summary of the assessment is presented in Table 1.

Table 1: Developer’s self-rating of prototype artifact against Figure 2 design criteria
Fitness

Attribute

Rating
(Weak, Limited,

Adequate, Strong)
Justification

Decomposability Adequate
Plus: Three artifacts—data, analytical framework, prototype—each could offer
design value independently. Minus: in current implementation, changes to data
typically required time consuming changes to the prototype.

Malleability Strong
Plus: Prototype logic and data are fully exposed to user modification and all
protections can be disabled. Users could adapt the tool to very specific situations
that were not originally envisioned.

Openness Strong Plus: Prototype is fully transparent, and the intent is to license a release version
using Creative Commons license.

Embedded in
Design System Weak

Minus: Minimal institutional support for the prototype currently exists and no
long-term plan for release and modification exists. Even if a plan did exist, a tool
developed by a particular program used to rank programs will likely be greeted
with justifiable suspicion.

Novel Limited
Plus: Different approach to program ranking problem than normally taken by
publishers. Minus: Not that new. All the elements of the solution have been
applied in other contexts.

Interesting Adequate
Plus: Everyone who has seen the prototype has expressed an interest in seeing
rankings. Minus: Large amount of default data makes many of its rankings
questionable.

Elegant Weak
Minus: Spreadsheet implementation makes advanced use and modification quite
clunky. For most users, it requires more data that they would care to supply and
generates unnecessarily detailed results.

Useful Limited
Plus: Substantial range of users (e.g., potential applicants, program directors,
program web managers). Provides an easy way to compare program data. Minus:
Requires substantial time investment to take advantage of its full functionality.

13

Discussion
Because the Alpha Prototype was intended to be an intermediate stage in a continuing development
process, three topics are the focus of this section. The first is the limitations of the existing prototype from
a design standpoint. The second is possible future directions for the research project. Finally, the
discussion concludes by reflecting on DSR lessons learned during the process.

Limitations of Existing Prototype
As earlier documented in Table 1, the existing prototype falls well-short of optimal fitness. The most
significant weaknesses appear to be in the following areas:

• Embedded in design system
• Elegance
• Novelty
• Usefulness

Each of these limitations is now discussed.

Embedded in Design System
The embeddedness criterion reflects the degree to which the artifact is likely to acquire institutional
support. The current prototype suffers from serious weaknesses in this regard. As of this writing, the
prototype artifact is entirely the product of a single individual. Although the researcher’s institution was
informed of the project, and expressed mild support, it is unclear if resources would be made available for
its long-term evolution and maintenance. Arguably, maintaining control of a ranking artifact could benefit
an institution’s visibility—the University of Texas, Dallas’ UTD 24 list of journals and UTD research
rankings (https://jsom.utdallas.edu/the-utd-top-100-business-school-research-rankings/) come to mind.
But such support might also lead to suspicions regarding bias in the rankings.

Concerns regarding bias in how program criteria were selected are well justified. By determining what
criteria are gathered and used to create program rankings, a program would be hard-pressed not to
highlight its own unique features. For example, the criteria listed in the Features category of Figure 4
describe aspects of the researcher’s program that were unique at the time they were introduced. Included
in the score, that program’s ranking necessarily rose. While disabling their impact (e.g., by setting the
“Features” category weight to 0) was straightforward, doing so would not be the default. Nor should such
innovations necessarily be ignored. Perhaps they should boost a program’s score?

A particularly critical expect of the embeddedness property involves long term system maintenance. For
the artifact to retain any credibility, program data would need to be updated regularly. That task would be
time consuming (e.g., by the end of the Alpha Prototype design process, the researcher had invested over
50 hours in gathering test data from program websites). Realistically, without resources and the long-term
cooperation of other DBA programs, the potential value of the application would diminish rapidly.

Elegance
The elegance property of a design is elusive. We may not be able to articulate why one artifact seems
more “right” than another, but that does not make the distinction unimportant. Indeed, some designs are
so elegant that they survive even though they were not perceived as useful when they were created.
Boolean algebra is an example of such an artifact (Gill & Hevner, 2013).

The Alpha Prototype seems about as far from elegant as an application can get. Key characteristics, such
as the number of DBA programs supported, the number of available criteria, and the number of scenarios

14

provided, are hard coded into many of the spreadsheet functions, making modifications an unnecessarily
painful process. Many of the formulas consist of deeply nested if-statements that are nearly impossible to
decipher. In some places, complex indirect reference formulas are utilized to avoid using VBA code to
copy data from one place to another. The list goes on…

These issues, along with the clunky interface, could be addressed more cleanly if the artifact were
implemented as a well-designed application employing a database for programs and criteria. Such an
implementation for the initial prototype, however, would have undermined the artifact’s openness and
malleability (particularly for non-programmers). Nevertheless, the artifact’s long-term fitness would
likely benefit from a more elegant approach.

Novelty
Ranking methodologies are not particularly novel. Basic sorting and filtering functionality—such as
available in most online shopping applications—accomplish the same task. Advocating the artifact as a
substitute for published rankings, however, is a somewhat novel approach to the DBA program choice
problem. Should the other design weaknesses of the artifact be addressed, its perceived novelty might be
amplified.

Usefulness
Usefulness makes a significant contribution to the fitness of most artifacts. As noted earlier in Table 1,
three categories of potential user were identified for the ranking prototype:

• DBA program applicants, who could use the tool to compare possible programs in making their
decision.

• Program directors, who could use the tool’s program data to compare their program to other
programs and to assess the potential impact of changes.

• Program web managers, who could use the tool’s criteria page to provide insights into the content
that should be included on their site.

The usefulness of the existing prototype is limited by factors that include:

• For many applicants, the universe of suitable choices is limited by geography. There are good
reasons—such as convenience, time efficiency, and access to an active alumni network—why a
local program may be the obvious choice for an applicant. Although the prototype easily
accommodates location preference (i.e., the user can rate each program’s location then weight the
criterion heavily), adjusting the analysis parameters to ensure a favored location receives the top
ranking makes the usefulness of the entire analysis moot. Naturally, the importance of geography
(time zone aside) should be substantially lower for online programs, increasing prototype
usefulness for such searches.

• The descriptions of the criteria included in the prototype are generally terse, leaving them open to
misinterpretation. Without greater documentation than is currently available, it is unclear how
helpful they would be in making decisions about program content. The same drawback applies to
managers of a program’s website.

Probably the greatest deficiency of the prototype was its failure to include international programs. That
choice was motivated by time constraints and the researcher’s limited knowledge of the criteria that could
best be used to characterize such programs. Ironically, this very ignorance meant that incorporating global
programs into the prototype would have significantly added to its potential usefulness.

15

Future Directions
The limitations of the existing prototype provide a roadmap for the future of the prototype and the
associated DSR process. The dominant obstacle seems to be embeddedness. Acquiring institutional
support for further development would be critical for the tool’s survival and evolution.

There appear to be two alternative paths for acquiring institutional support available (ignoring the ever-
present “abandon the project” alternative):

1. Embed in an institution offering a DBA program. Applying the previously mentioned UTD
model, a single institution could support ongoing development and data collection for the artifact.
That institution could benefit in various ways, including controlling the criteria incorporated in
the model (potentially improving the institution’s ranking), attracting traffic to the program’s
website, and increasing the national visibility of the program. Funding for the application’s
evolution could be supported indirectly through increased enrollments. The drawbacks of the path
would be concerns relating to built-in bias and the potential unwillingness of other programs to
provide and verify data required by the system.

2. Embed in a neutral industry-wide institution or a consortium of programs. A path in which no
single institution exerts control over the application should greatly reduce concerns of bias and
increase willingness to provide data. Unfortunately, this path also comes with drawbacks.
Because no single institution benefits from the application, acquiring resources to support further
development is likely to be problematic. In addition, key design decisions—such as what DBA
programs to include in the database, what criteria need to be incorporated, and the appropriate
settings for default scenarios—would demand a process for achieving consensus. Assuming the
process involves forming a committee consisting mainly of faculty, one can anticipate
interminable discussions with minimal resolution.

At the time of writing, both potential paths are being considered as part of the ongoing design process.
The artifact consisting of the current paper is the focus of a design cycle whose objective is exploring the
second path.

Reflections on DSR Process
Beyond the creation of a prototype ranking artifact, a significant personal goal for the researcher was to
acquire experience applying the eADR framework (Mullarkey & Hevner, 2019) to a non-trivial
development task. As previously noted, the initial expectation was that the task would be neatly broken up
into three stages, each with its own artifact: diagnosis (developing the list of input data for each program),
design (developing an analytical framework that could be used to rank programs) and implementation
(constructing a spreadsheet-based implementation of the framework). The framework’s model of moving
forwards and backwards between stages modeled the actual process well; modifications to each of the
associated artifacts happened continuously throughout the process. This is also consistent with
observations made in other agile projects (Mullarkey & Hevner, 2019, p. 14).

In developing Table A2—which was constructed by examining intermediate prototypes saved at key
stages of the development process—it became clear that the cycles were not associated with the
individual artifacts as cleanly as Figure 1 suggested. Indeed, most cycles involved simultaneous
modifications to at least two of the three artifacts, which proved to be highly interrelated. Moreover, the
distinction of what constituted diagnosis, design and implementation throughout the process was fuzzy, at
best.

16

The nature of the project probably accounts for much of the fuzziness. First, the project was constructed
by a single developer. In consequence, the need for a formal transfer of information between
individuals—as is normally required between stages in a complex project—was eliminated. Second, the
broad objective of the project was to create a prototype. Since a major reason to create any prototype is to
test out a design, such an objective necessarily blurs the distinction between design and implementation.

Given the context, the entire project might alternatively have been framed as iterations of a design cycle.
Based on the actual design experience, however, each cycle tended to involve multiple artifacts. The
eADR process description provided by Mullarkey and Hevner (2019) does not preclude multiple artifacts
being refined within a single cycle. The paper’s examples, however, normally involve a single artifact per
cycle (although different cycles within the same ADR stage may involve different artifacts). For projects
like the ranking prototype, it might be useful to explicitly model multiple “interacting artifact” cycles, as
illustrated in Figure 6.

Figure 6: Design cycle involving multiple artifacts

Conclusions
If DBA programs continue to grow in popularity, the dissemination of rankings by credible publishing
organizations is inevitable. The assumption motivating the current research is that by offering a tool that
approaches the ranking problem in a (somewhat) sensible manner, we may be able to forestall the adverse
impacts of such published rankings on the DBA program community. Otherwise, the goals of acquiring
great applicants and the prestige associated with high rankings could lead to more intense, zero-sum
competition between programs.

The creation of the ranking tool prototype described here demonstrates the technical feasibility of
allowing users to co-create their own rankings for DBA programs. Its attractiveness to actual users
remains untested, as does its long-term development path. Exposing the broader DBA community to the
tool in its early stages and acquiring feedback is an important step in its evolution.

References
Bachrach, D.G. et al. (2017). On academic rankings, unacceptable methods, and the social obligations of

business schools. Decision Sciences, 48(3). 561-585.

17

Brown, J.L. (2015, 8 December). Ranking puts USF Muma doctorate program above Harvard, UF. Tampa
Bay Business Journal. https://www.bizjournals.com/tampabay/news/2015/12/08/ranking-puts-usf-
muma-doctorate-program-above.html

Gill, T.G. (2010). Informing business: Research and education on a rugged landscape. Informing Science
Press.

Kauffman, S. A. (1993). The origins of order. Oxford University Press.

McGurn, W. (2009, September 15). Let’s grade Wall Street like colleges. The Wall Street Journal, p. A19.

Meredith, M. (2004). Why do universities compete in the ratings game? An empirical analysis of the
effects of the US News and World Report college rankings. Research in Higher Education, 45,
443-461.

Monks, J., & Ehrenberg, R. G. (1999). The impact of US News and World Report college rankings on
admission outcomes and pricing decisions at selective private institutions. NBER Working Paper
Series, Working Paper 7227. 1-13. Retrieved from
https://www.nber.org/system/files/working_papers/w7227/w7227.pdf

Mullarkey, M.T. & Hevner, A.R. (2019). An elaborated action design research process model, European
Journal of Information Systems, 28:1, 6-20. https://doi.org/10.1080/0960085X.2018.1451811

Van Der Werf, M. (2009, June 3). Researcher offers unusually candid description of university's effort to
rise in rankings. Chronicle of Higher Education. Retrieved from
http://chronicle.com/daily/2009/06/19270n.htm

https://www.bizjournals.com/tampabay/news/2015/12/08/ranking-puts-usf-muma-doctorate-program-above.html
https://www.bizjournals.com/tampabay/news/2015/12/08/ranking-puts-usf-muma-doctorate-program-above.html
https://www.nber.org/system/files/working_papers/w7227/w7227.pdf
https://doi.org/10.1080/0960085X.2018.1451811
http://chronicle.com/daily/2009/06/19270n.htm

18

Appendix

Table A1: Initial Criteria for Data Gathering

Category Measurement Rubric
Negative
Allowed Weight (1-10) Status

Location Geography
0=Unacceptable, 1=Poor, 2=Disliked, 3=Okay,4=Good,
5=Outstanding No 3 Ok

Location Campus Setting
0=Unacceptable, 1=Poor, 2=Disliked, 3=Okay,4=Good,
5=Outstanding No 3 Ok

Location Convenience
0=Unacceptable, 1=Poor, 2=Disliked, 3=Okay,4=Good,
5=Outstanding No 3 Ok

Meetings
Face-to-Face Hours
Per Semester

0=None,1=1-10,2=11-25,3=26-50,4=51-100,5=101 and
over (Hours of face-to-face meetings per semester) Yes 5 Ok

Meetings
Campus Visits per
Semester

0=None,1,2,3,4,5=5 and over (Number of visits
required each semester) Yes -8 Ok

Meetings

Synchronous
Online Hours Per
Semester

0=None,1=1-10,2=11-25,3=26-50,4=51-100,5=101 and
over (Hours of synchronous online meetings per
semester) Yes 5 Ok

Meetings

Synchronous
Online Meetings
Per Semester

0=None,1=1-2,2=3-4,3=5-6,4=7-10,5=11 and over
(Number of synchronous online sessions per
semester) Yes 5 Ok

Institution AACSB Accredited
0=No, 1=Yes (AACSB accreditation is generally
considered the premier standard in the U.S.) No 8 Ok

Institution AAU Member
0=No, 1=Yes (An invitation-only organization of North
American research institutions) No 2 Ok

Institution Research 1
0=No, 1=Yes (A Carnegie classification signifying very
high research activity) No 3 Ok

Program Cohort Based
0=No, 1=Yes (Do participants proceed through the
program as part of a cohort?) Yes 8 Ok

Program Class Size
0=None,1=1-4,2=5-9,3=10-15,4=15-25,5=26 or more
(Estimated number of students in each class) Yes 2 Ok

Program

Estimated
Workload Per
Week

0=None,1=1-5 hours,2=6-10 Hours,3=11-15
Hours,4=16-25 Hours,5=26 or more hours Yes 4 Ok

Program Credit Hours
0=None,1=1-30,2=31-40,3=41-50,4=51-60,5=61 or
more (Total credit hours of the program) Yes 4 Ok

Cost Program Tuition

0=None,1=$1-29999,2=$30000-59999,3=$60000-
89999,4=$90000-119999,5=$120000 and up (Total
program tuition) No 0 Ok

Cost Books Included 0=No,1=Yes (Does program cost include books) No 3 Ok

Cost Meals Included 0=No,1=Yes (Does program cost include meals) No 3 Ok

Cost
Research Budget
Included

0=None,1=$1-1999,2=$2000-3999,3=$4000-
5999,4=$6000-7999,5=$8000 and up (Total research
and travel budget provided by the program) No 5 Ok

Feature
Conference
Requirement

0=None,1,2,3,4,5=5 and over (How many academic
conferences must participants attend?) Yes 5 Ok

Feature
Dissertation Type
Options

0=No,1=Yes (Does the program offer options besides
the standard dissertation and multi-paper
dissertation?) No 5 Ok

Feature
Dissertation
Groups

0=No,1=Yes (Does the program assign a group of
students to a dissertation committee?) Yes 5 Ok

Feature Mentor Program
0=No,1=Yes (Does the program have a formal process
for assigning mentors?) No 5 Ok

Feature In-House Journal
0=No,1=Yes (Does the program publish one or more
journals suitable for publishing DBA research?) No 5 Ok

Feature Other Features
0=None,1,2,3,4,5=5 and over (Provided to account for
features not included in the spreadsheet) No 0 Ok

19

Table A2: Summary of Major Development Cycles

Cycle Substantive Changes

Crite-
ria

Test
/ Total
Cases

Evaluation

1 Base case (see Table A1) 24 2/20 Criteria need to be normalized for their
impact to be understood by the user.
Comparing program scores across
columns was cumbersome.

2 Criteria normalized in hidden
column, min and max values for
data added. This allowed raw
variable values to be used, rather
than ordinal categories. Used
Transpose() and Sort() functions
to generate ranked list based on
scores.

26 2/20 Certain variables, such as hours work
per week, better viewed as having
optimal values rather than being either
negative or positive across their range.
Recognized need to remove obviously
unapplicable programs from sorted
listing.

3 Added variable targets.
Implemented a rudimentary
filter capability

26 2/20 Many more variables seemed potentially
relevant to ranking.

4 Added data elements, including
5 user-definable attributes

46 2/20 With more growth in the number of
attributes, missing data was expected to
become a problem

5 Added default value for each
attribute and allowed a -1 to
signal unknown values. Added
conditional formatting logic to
some cells, indicating out-of-
range and default-driven values.

46 3/20 2 test cases proved insufficient for
further testing. Demonstrated
application to program leadership, who
indicated that the interface was likely to
be too cumbersome for general users.

6 Expanded maximum programs
to 50. Gathered data on 30
programs using EDBAC
membership list. Implemented
numbered scenarios to make
rapid ranking simpler.

46 30/50 Based on review of existing program
websites, incorporating additional
criteria seemed warranted. Number of
intermediate spreadsheets was
increasing the degree to which the
interface was confusing.

7 Added 14 new criteria and
began hiding intermediate
worksheets to streamline the
interface. Verified data for
existing programs using
program websites.

60 30/50 Prototype was starting to resemble a
usable tool, but there were concerns that
some U.S. programs might have been
missed based on CEO listing. Also, the
scenario interface implementation was
easy to miss.

8 Gathered data for 2 additional
programs. Created Main
worksheet that allowed user to
see key rankings for different
scenarios in one place.

60 32/50 Additional scenarios and explanations
were needed.

9 Added additional scenarios and
cleaned up elements of the
interface.

60 32/50 Running dangerously close to
submission deadline for EDBAC.

10 Finalized Alpha version 60 32/50 Need to complete DSR paper artifact.

20

Table A3: Scenario Descriptions (copied from the Alpha Prototype)
Name
(Scenario)

Title Description

Base Case
(Scenario1)

A basic scenario for a face-
to-face program. Most
elements are weighted
relatively evenly.

Basic scenario. Can be used to copy to user-created
scenarios. Unit weights on most items except those
that have no clear dominant directionality.

PhD
Substitute
(Scenario2)

A scenario more closely
aligned with PhD program
values.

Basic scenario adjusted to make it as close to a PhD as
possible. For example, increased weight on requiring a
Master's degree, requiring GMAT/GRE, curriculum
flexibility criteria, executive PhD designation, bumped
targeted workload to 25, reduced cohort size, made
hiring own graduates negative, bumped up research
budget value, made program tuition more negative,
removed or negated weights on unusual DBA features.

Online
Program
(Scenario3)

A basic scenario for an
online program with items
weighted according to our
perceived importance.

Base scenario with a filter that only captures online
programs. Made hours of simulcast negative to
distinguish hyflex programs from pure online
programs. Zeroed out location criteria.

Value
(Scenario4)

A base case scenario where
for a face-to-face program
where costs are most heavily
weighted.

Basic scenario, filtered for face-to-face or hyflex, with
increased negative weights on all items expected to
increase costs and increased positive weights on items
that could reduce costs. Special features are disabled.

Max
Flexibility
(Scenario5)

A basic scenario maximized
for flexibility, but not
necessarily online delivery.

Basic scenario with high positive weights on hyflex
(simultaneous online and in-class) delivery and
negative weights on synchronous class hours and
visits. Cohort structure is not weighted.

International
(Scenario6)

A ranking of programs
supporting an international
student visa (F1/I-20).

Basic scenario filtered for international students. Since
students can't work outside of the university, frequency
of visits and availability of other activities are
positively weighted, as are attributes that build
connections with alumni and other students.

Reputation
(Scenario7)

A scenario where the highest
emphasis is on the
institution's research
reputation. Face-to-face
programs only.

Basic scenario with much greater weight placed on
indicators of reputation (i.e., AACSB, AAU, R1,
national research ranking). Special features are zeroed
out. Only face-to-face programs are considered.

User 1
(Scenario8)

A scenario reserved for
users. All the beige cells can
be changed.

Users: Edit this block to describe the purpose of the
scenario and how it has been modified.

User 2
(Scenario9)

A scenario reserved for
users. All the beige cells can
be changed.

Users: Edit this block to describe the purpose of the
scenario and how it has been modified.

User 3
(Scenario10)

A scenario reserved for
users. All the beige cells can
be changed.

Users: Edit this block to describe the purpose of the
scenario and how it has been modified.

	Abstract
	Introduction
	The Paradox of Rankings
	Design Objectives
	Objectives and Artifacts
	The Design Process
	Design Criteria for Artifacts

	Method: The Design Process
	Initial Design Decisions
	Artifact 1: Variables and Program Test Cases
	Artifact 2: Analytical Framework
	Artifact 3: The Prototype
	Incremental Changes
	Transformational Change: Implementing Scenarios

	Results: The Implementation Cycles
	Artifact 3: The Alpha Prototype
	Self-Assessment of Prototype Fitness

	Discussion
	Limitations of Existing Prototype
	Embedded in Design System
	Elegance
	Novelty
	Usefulness

	Future Directions
	Reflections on DSR Process

	Conclusions
	References
	Appendix

