14TH Annual International Engaged Management Scholarship Conference Henley-on-Thames, United Kingdom

The Impact of Al on Healthcare Operational Efficiency: Ethical Considerations in Revenue Cycle Management and Supply Chain Management

Facilitator: Dr. Michelle Dutton – Temple University Panel Participants: Dr. Janel Paulk – Georgia State University Dr. Luwanda Jones – Temple University

Introduction and Background

• Al in Healthcare

- Impact of AI on Healthcare Operational Efficiencies
- Revenue Cycle Management
- Supply Chain Management

• Questions and Discussions

AI in Healthcare

- The world of AI is everywhere
- Impacts are visible across all industries
- Capable of changing the fundamental way we do business and frame research

Benefits	Challenges
Enhanced decision making, communication, risk analysis and tools for collaboration	Automation of Biases, lack of data for some demographics
Support for the evolving work force with tools to handle the rapid rate of change	Reduction in force of displacement of skilled labor with increases in automation
Enhanced financial controls, fraud prevention and cyber security	Ethical Considerations in decision structure, overreliance on AI for decisions
Availability of real time data and personalized medicine	Cyber security, Protection of Data and Privacy (HIPAA)

The Impact of AI on Healthcare Operational Efficiency: Ethical Considerations in Revenue Cycle Management (RCM)

ltem	Description
Problem	Implementation of AI in Healthcare Revenue Cycle Management (RCM)
Area of Concern	Ethical Considerations
Research Questions	 What is the organizational impact of AI on Healthcare RCM? What ethical considerations must an organization consider in Healthcare RCM?
Conceptual Framework	Responsible AI (Johnson, 2023)
Research Method	Review of Literature Case Comparison

The Problem: US Healthcare Spending

The U.S. Has the Lowest Life Expectancy Among Large, Wealthy Countries While Far Outspending Them on Health Care

Life expectancy (2021) and per capita healthcare spending (2021 or nearest year)

Country	Life expectancy	Health spending, per capita
United States	76.1	\$12,318
쁆 United Kingdom	80.8	\$5,387
💻 Germany	80.9	\$7,383
= Austria	81.3	\$6,693
Netherlands	81.5	\$6,190
💶 Belgium	81.9	\$5,274 REFERENCE:
Comparable Country Average	82.4	\$6,003 https://www.kff.org/other
France	82.5	\$5,468 /slide/the-u-s-has-the- lowest-life-expectancy-
🔚 Sweden	83.2	\$6,262 among-large-wealthy-
🐸 Australia	83.4	\$5,627 countries-while-far- outspending-them-on-
Switzerland	84.0	\$7,179 health-care/
• Japan	84.5	\$4,666 Peterson-KFF

Health System Tracker

The Problem: **US Healthcare Spending**

Tasks¹

20 18

> 16 14

10. 8 6

Spending on Health as a % of GDP

17% of GDP

United

States

United

Kingdom

US RCM Cost Areas^{2,3}

²Gee and Spiro 2019 ³State of Claims, 2022

The Potential Impact of AI on RCM^{1,2,3}

05 Improved Patient Experience

- Reduce AR Tasks
- Increase Patient Financial Engagement

04 Analyze Revenue Management

- Perform RCM Analysis
- Forecast and Predict RM

03 Improve Denial Management

- Conduct Predictive
 Analysis
- Implement Proactive Denial Analysis

Automate Administrative Tasks

- Streamline Processes
- Review Claim Submissions

02 Improve Medical Coding Accuracy

 Reduce Operational Costs

> ¹ Saeed 2024 ² Zhu 2024 ³ Khan 2022

Ethical Concerns

Bias and Fairness

- Algorithmic Bias
- Fairness in Decision-Making

Accountability

- Responsibility for Decisions
- Governance and Oversight

Fairness and Equity

- Equitable Resource Allocation
- Avoiding Discrimination

Risk and Liability

- Managing Risks
- Legal Liability

Transparency and Trust

- Explainability
- Building Trust

Privacy and Data Security

- Protecting Patient Data
- Consent and Ethical Data Use

Human Oversight

- Maintaining a Human-in-the-Loop
- Continuous Monitoring

Transparency and Accountability

- Audit Trails
- Stakeholder Involvement

Ethical Framework: Responsible AI (RAI)¹

Principle of	Principle of	Principle of Non-	Principle of	Principle of
Transparency	Justice	Maleficence	Accountability	Privacy
 Increase Explainability of AI Designs Explanations "in non-technical terms" 	 Reduce the risk of discrimination Acquire diverse datasets Preprocess data with established standards 	 Consider harm- prevention guidelines and strategies Cross- disciplinary Oversight of stakeholders 	 Ethics in Data Collection Align with human values to benefit humans 	 Data Protection and Security Protect Privacy

Al Stage	Avoid	Increase
Data Collection	Personal Data (PRIVACY)	Data protection and Security (PRIVACY)
Design	 Unwanted discrimination (JUSTICE) Unintentional harm (NON- MALEFICENCE) 	 Explainability and Interpretability (TRANSPARENCY)
Usage	 Damage Caused by AI (NON- MALEFICENCE) 	 Standards or Normative encoding (JUSTICE) Active cooperation across disciplines and stakeholders (NON-MALEFICENCE)

Case Studies

	HOSPITAL	RCM AREA	DESCRIPTION	RESULTS
01 Friedman et al. (2004)	Columbia University's Medical Language Extraction and Encoding	Clinical Coding	Automatically map clinical document to codes with modifiers and quantitatively evaluate the method.	
02 Zeng et al. (2006)	Brigham and Women's Hospital's open-source Health Information Text Extraction	Clinical Coding	Health Information Text Extraction (HITEx) tool to extract findings for airways disease.	
03 Codametrix Case Study Report (2023)	University of Colorado Medicine and Codametrix	Autonomous Medical Coding in Radiology	Al-powered coding automation to improve coding quality, reduce manual coding, and shorten reimbursement time.	
04 Burns et al.(2020)	ML and NLP Models to develop classification tools for anesthesia CPT codes.	Classification Tools for Anesthesia CPT Codes.	Train/Test 5 supervised ML models to classify anesthesiology CPT codes, with at least 95% accuracy,	

Future Trends and Opportunity for Research

Dr. Luwanda F. Jones Temple University

The Impact of AI on Healthcare Operational Efficiency: Ethical Considerations in Supply Chain Management (SCM)

Healthcare Supply Chain Management: Al's Impact and Ethical Considerations

Discussion Questions

What is the organizational impact of AI on healthcare supply chain management?

What ethical considerations must an organization consider when implementing AI capabilities in healthcare supply chain management?

Impact of Artificial Intelligence on Healthcare Supply Chain Management (SCM)

Al's impact

Large unstructured data to structured actionable data

Predictive analytics models

End-to-end supply chain visibility

Uses of AI in SCM

Management and distribution of healthcare resources

- Inventory Management
- Demand Forecasting
- Customer Support
- Supply Chain risk management
- Supplier optimization

Ethical Considerations

Participants Results of Impact on Al in Supply Chain Management

Participants Results of Ethical Considerations of Al on Healthcare Supply Chain Management

Conclusion

AI is Revolutionizing Healthcare SCM and Logistics	 Streamlining processes Boosting the effectiveness of the supply chain Enabling data-informed decision-making
Challenges and Barriers to Implementation	 Effectiveness constrained by data source, availability and quality Data inconsistency limits Al's potential Security Al Governance

Questions and Discussion

Thank You

Al and Healthcare RCM: Review of Literature

Search String: "artificial intelligence" and "healthcare" and "revenue cycle management"

AI and Healthcare RCM References:

- Al-Haque, S. K., Vipul; Mandal, Suman; Rayasam, Mahi; Singh, Pooja. (2022). Al ushers in next gen prior authorization in healthcare (Healthcare Systems & Services Practice, Issue. <u>https://www.mckinsey.com/industries/healthcare/ourinsights/ai-ushers-in-next-gen-prior-authorization-in-healthcare</u>
- Alanazi, A., Al-Enezi, N., Aldidab, H. F., & Alruwaili, H. K. (2021). Clinical Healthcare Technologies: An Analysis of Healthcare Technologies Used in Medical Clinics. *International Journal of Bio-Medical Informatics and e-Health*, 9, 1-9. <u>https://doi.org/10.30534/ijbmieh/2021/01952021</u>
- Aldaba, R. M. (2019). Mapping the Philippines in the Offshoring Services Global Value Chain. Southeast Asian Economies, 36, 153-182. <u>https://doi.org/10.1355/ae36-2b</u>
- Bhasker, S. B., Damien; Lamb, Jessica; Stein, George. (2023). *Tackling healthcare's biggest burdens with generative AI* (Healthcare Practie, Issue. M. Company. <u>https://www.mckinsey.com/industries/healthcare/our-insights/tackling-healthcares-biggest-burdens-with-generative-ai?cid=other--soc--bam-ip-dmk-dmk---&sid=soc-POST ID&linkId=225882468</u>
- Biswas, K., & b, G. P. (2023). Role of Artificial Intelligence (AI) in Changing Consumer Buying Behaviour. International Journal of Research Publication and Reviews, 04, 943-951. <u>https://doi.org/10.55248/gengpi.2023.4227</u>
- Bloomrosen, M., & Berner, E. S. (2019). Findings from the 2019 International Medical Informatics Association Yearbook Section on Health Information Management. *Yearbook of medical informatics*, 28, 065-068. <u>https://doi.org/10.1055/s-0039-</u> <u>1677941</u>
- Burns, M. L., Mathis, M. R., Vandervest, J., Tan, X., Lu, B., Colquhoun, D. A., Shah, N., Kheterpal, S., & Saager, L. (2020). Classification of Current Procedural Terminology Codes from Electronic Health Record Data Using Machine Learning. *Anesthesiology*, 132(4), 738-749. <u>https://doi.org/10.1097/ALN.00000000003150</u>
- CMS. (2024). National Health Expenditure Projections. In National Health Expenditure Projections.
- Executive Roundtable: Sponsored by 3M. (2023).
- Friedman, C., Shagina, L., Lussier, Y., & Hripcsak, G. (2004). Automated encoding of clinical documents based on natural language processing. J Am Med Inform Assoc, 11(5), 392-402. <u>https://doi.org/10.1197/jamia.M1552</u>
- Hawayek, J., & AbouElKhir, O. (2023). Problems with Medical Claims that Artificial Intelligence (AI) and Blockchain Can Fix. Blockchain in Healthcare Today, 6. <u>https://doi.org/10.30953/bhty.v6.273</u>
- He, W., Zhang, Z., Wu, H., Li, W., & Shetty, S. (2022). A Unified Health Information System Framework for Connecting Data, People, Devices, and Systems. *Journal of global information management*, 30, 1-19. <u>https://doi.org/10.4018/jgim.305239</u>
- Increase in autonomous medical coding at CU Medicine leads to reduction in backlog and billing lag. (2023). (Codametrix case study, Issue. <u>https://www.codametrix.com/wp-content/uploads/2022/08/CMX-CU-Med-Case-study-v2.pdf</u>
- Johnson, M., Albizri, A., & Harfouche, A. (2021). Responsible Artificial Intelligence in Healthcare: Predicting and Preventing Insurance Claim Denials for Economic and Social Wellbeing. *Information Systems Frontiers*, 25(6), 2179-2195. <u>https://doi.org/10.1007/s10796-021-10137-5</u>

AI and Healthcare RCM References Continued:

- Kamble, S. S., Gunasekaran, A., Goswami, M., & Manda, J. (2018). A systematic perspective on the applications of big data analytics in healthcare management. *International journal of healthcare management*, 12, 226-240. <u>https://doi.org/10.1080/20479700.2018.1531606</u>
- Kewalchand, P. S. (2024). Al in Healthcare. International Journal of Advanced Research in Science, Communication and Technology, 544-548. <u>https://doi.org/10.48175/ijarsct-15285</u>
- Khan, A. A. (2022). The Intersection of Finance and Healthcare: Financing Healthcare Delivery Systems. *Journal of Education and Finance Review*, 1, 22-34. <u>https://doi.org/10.62843/jefr/2022.1715003</u>
- Kilanko, V. (2023a). Leveraging Artificial Intelligence for Enhanced Revenue Cycle Management in the United States. International Journal Of Scientific Advances, 4. <u>https://doi.org/10.51542/ijscia.v4i4.3</u>
- Kilanko, V. (2023b). The Transformative Potential of Artificial Intelligence in Medical Billing: A Global Perspective. International Journal Of Scientific Advances, 4. <u>https://doi.org/10.51542/ijscia.v4i3.8</u>
- Kim, J., Vivas, A. C., Arvind, V., Lombardi, J. V., Reidler, J. S., Zuckerman, S. L., Lee, N. J., Vulapalli, M., Geng, E., Cho, B., Morizane, K., Cho, S. K., Lehman, R. A., Lenke, L. G., & Riew, K. D. (2022). Can Natural Language Processing and Artificial Intelligence Automate The Generation of Billing Codes From Operative Note Dictations? *Global Spine Journal*, 13, 1946-1955. https://doi.org/10.1177/21925682211062831
- Lamb, J. I., Greg; Agarwal, Rahul; Bhasker, Shashank. (2024). Generative-Al-in-healthcare-Adoption-trends-and-whats-next (QuantumBlack AI by McKinsey, Issue. <u>https://www.mckinsey.com/industries/healthcare/our-insights/generative-ai-in-healthcare-adoption-trends-and-whats-next</u>
- Lisa A. Eramo, M. A. (2023). *How AI is about to change healthcare* (Technology, Issue. <u>https://www.hfma.org/technology/how-ai-is-about-to-change-healthcare/</u>
- Medicine, L. A. C. (2024). Healthcare Revolution: How AI and Machine. JRSSEM, 03. https://doi.org/10.59141/jrssem.v3i05.558
- Mishra, S. (2022). Artificial Intelligence: A Review of Progress and Prospects in Medicine and Healthcare. *Journal of Electronics* Electromedical Engineering and Medical Informatics, 4, 1-23. <u>https://doi.org/10.35882/jeeemi.v4i1.1</u>
- Mohamad, T. A., Bastone, A., Bernhard, F., & Schiavone, F. (2023). How artificial intelligence impacts the competitive position of healthcare organizations. *Journal of Organizational Change Management*, 36, 49-70. <u>https://doi.org/10.1108/jocm-03-2023-0057</u>
- Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The Impact of Artificial Intelligence on Workers' Skills: Upskilling and Reskilling in Organisations. *Informing science*, 26, 039-068. <u>https://doi.org/10.28945/5078</u>
- Odeyemi, O. (2024). Integrating accounting fintech innovations in the U. S. healthcare sector: opportunities, challenges, and impacts on financial management and patient care. *World Journal of Advanced Research and Reviews*, 22, 1221-1233. https://doi.org/10.30574/wjarr.2024.22.1.1211
- Pagallo, U., O'Sullivan, S., Nevejans, N., Holzinger, A., Friebe, M., Jeanquartier, F., Jean-Quartier, C., & Miernik, A. (2023). The underuse of AI in the health sector: Opportunity costs, success stories, risks and recommendations. *Health and* technology, 14, 1-14. <u>https://doi.org/10.1007/s12553-023-00806-7</u>

Al and Healthcare RCM References Continued:

- Pandya, H., & Pandya, T. (2023). Application of artificial intelligence in medical care: review of current status. *International journal of medicine*, 10, 177-185. <u>https://doi.org/10.18203/2349-3933.ijam20230073</u>
- Scott, T. (2019). The promise of AI in healthcare. In: Medical Economics.
- Sherer, S. A. (2012). St. Luke's University Health Network. *Journal of cases on information technology*, 14, 1-17. https://doi.org/10.4018/jcit.2012040101
- The State of Claims Survey 2022. (2022). (Experian Health, Issue. <u>https://www.experian.com/healthcare/resources-insights/thought-leadership/white-papers-insights/state-claims-report</u>
- Systems, M. H., & Practice, S. (2021). Perspectives on the Productivity Imperative in US Healthcare Delivery. In.
- Thakur, A. (2022). A Comprehensive Study of the Trends and Analysis of Distributed Ledger Technology and Blockchain Technology in the Healthcare Industry. <u>https://doi.org/10.3389/fbloc.2022.844834/pdf</u>
- Wadhwa, S. G., Rashmi; Uygun Hayri. (2022). Talent Management amidst the Covid-19 Pandemic with the Role of AI in the Health Industry. International Management Review, 18(51 - 58). https://www.researchgate.net/publication/365362434 Talent Management amidst the Covid-
 - 19 Pandemic with the Role of AI in the Health Industry
- Zeng, Q. T., Goryachev, S., Weiss, S., Sordo, M., Murphy, S. N., & Lazarus, R. (2006). Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak, 6, 30. <u>https://doi.org/10.1186/1472-6947-6-30</u>
- Zhu, C., Attaluri, P., Wirth, P. J., Shaffrey, E. C., Friedrich, J. B., & Rao, V. K. (2024). Current Applications of Artificial Intelligence in Billing Practices and Clinical Plastic Surgery. *Plastic & Reconstructive Surgery Global Open*, 12, e5939-e5939. <u>https://doi.org/10.1097/gox.0000000005939</u>

Al and Healthcare SCM Methodology:

Qualitative Research-Interpretative Approach

Data Technique

- Semi-structured interview sessions
 - 7 interview sessions of which 2 sessions with multiple participants: 1 session with 6 participants; 1 session with 2 participants
 - 13 Participants: 7 government executives and 6 industry AI professionals
 - Expertise: Healthcare Supply Chain, Procurement, Information Technology, AI
 - Type of Organization: 1- US Government Federal Healthcare Network and 1- Industry Consultant
- Documentary Sources
- Scholarly Journal Articles
- Websites on Supply chain management, artificial intelligence, and other factors associated to AI impact on healthcare supply chains
- U.S. Federal Government Regulations, Presidential Orders, Other Public Documents

Data Analysis

- Braun & Clark (2022) Reflexive Thematic Analysis Process
- Transcription tools: Zoom, Otter.AI, MS Word, MS Excel

Al and Healthcare SCM References:

- Antràs, P. 2019, December. Conceptual aspects of global value chains. Conceptual Aspects of Global Value Chains. NATIONAL BUREAU OF ECONOMIC RESEARCH. https://scholar.harvard.edu/antras/publications/conceptual-aspects-global-value-chains.
- Damoah, I. S., Ayakwah, A., & Tingbani, I. 2021. Artificial Intelligence (ai)-enhanced medical drones in the Healthcare Supply Chain (HSC) for Sustainability Development: A case study. Journal of Cleaner Production, 328: 129598.
- Dilmegani, C. 2024, January 2. 10 generative AI supply chain use cases in 2024. AIMultiple. https://research.aimultiple.com/generative-ai-supply-chain/.
- Ijiga, A. C., Abutu, E. P., Idoko, I. P., Agbo, D. O., Harry, K. D., et al. 2024. Ethical considerations in implementing Generative AI for Healthcare Supply Chain Optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 7(1): 048–063.
- Ivanova, M. A. (2022). Evaluation of Risks to Russian Food Supply Chains during the COVID-19. Management Science and Business Decisions. https://doi.org/10.52812/msbd.42
- Johnson, S. 2018. AI-Driven Healthcare Solutions Worldwide. International Journal of Transcontinental Discoveries, 5(1): 1–6.
- Kumar, A., Mani, V., Jain, V., Gupta, H., & Venkatesh, V. G. 2022, November 15. Managing Healthcare Supply Chain through Artificial Intelligence (AI): A study of critical success factors. Computers & industrial engineering. U.S. National Library of Medicine. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9664836/.
- Sharma, R., Shishodia, A., Gunasekaran, A., Min, H., & Munim, Z. H. (2022). The role of artificial intelligence in supply chain management: mapping the territory. International Journal of Production Research, 60(24), 7527–7550. https://doi.org/10.1080/00207543.2022.2029611
- Vyshnevska, A. 2024a, April 22. Generative AI in Supply Chain: 10 use cases & examples. Master of Code Global. https://masterofcode.com/blog/generative-ai-in-supply-chain.